Hause, A. M. et al. Security monitoring of bivalent COVID-19 mRNA vaccine booster doses amongst individuals aged >/=12 years—United States, August 31-October 23, 2022. MMWR Morb. Mortal Wkly Rep. 71, 1401–1406 (2022).
Winkle, M., El-Daly, S. M., Fabbri, M. & Calin, G. A. Noncoding RNA therapeutics—challenges and potential options. Nat Rev. Drug Discov. 20, 629–651 (2021).
Enuka, Y. et al. Round RNAs are long-lived and show solely minimal early alterations in response to a progress issue. Nucleic Acids Res. 44, 1370–1383 (2016).
Zhang, Y. et al. The biogenesis of nascent round RNAs. Cell Rep. 15, 611–624 (2016).
Fischer, J. W., Busa, V. F., Shao, Y. & Leung, A. Ok. L. Construction-mediated RNA decay by UPF1 and G3BP1. Mol. Cell. 78, 70–84.e76 (2020).
Liu, C. X. et al. Construction and degradation of round RNAs regulate PKR activation in innate immunity. Cell 177, 865–880.e821 (2019).
Wesselhoeft, R. A. et al. RNA circularization diminishes immunogenicity and may prolong translation length in vivo. Mol. Cell. 74, 508–520.e504 (2019).
Liu, C. X. et al. RNA circles with minimized immunogenicity as potent PKR inhibitors. Mol. Cell. 82, 420–434.e426 (2022).
Liu, C. X. & Chen, L. L. Round RNAs: characterization, mobile roles, and purposes. Cell 185, 2390 (2022).
Bou-Nader, C., Gordon, J. M., Henderson, F. E. & Zhang, J. The seek for a PKR code-differential regulation of protein kinase R exercise by numerous RNA and protein regulators. RNA 25, 539–556 (2019).
Cao, S. S., Tune, B. & Kaufman, R. J. PKR protects colonic epithelium in opposition to colitis by means of the unfolded protein response and prosurvival signaling. Inflamm. Bowel Dis. 18, 1735–1742 (2012).
Grolleau, A., Kaplan, M. J., Hanash, S. M., Beretta, L. & Richardson, B. Impaired translational response and elevated protein kinase PKR expression in T cells from lupus sufferers. J. Clin. Make investments. 106, 1561–1568 (2000).
Rath, E. et al. Induction of dsRNA-activated protein kinase hyperlinks mitochondrial unfolded protein response to the pathogenesis of intestinal irritation. Intestine 61, 1269–1278 (2012).
Zheng, X. & Bevilacqua, P. C. Activation of the protein kinase PKR by brief double-stranded RNAs with single-stranded tails. RNA 10, 1934–1945 (2004).
Ingrand, S. et al. The oxindole/imidazole spinoff C16 reduces in vivo mind PKR activation. FEBS Lett. 581, 4473–4478 (2007).
Mouton-Liger, F. et al. PKR downregulation prevents neurodegeneration and β-amyloid manufacturing in a thiamine-deficient mannequin. Cell Demise Dis. 6, e1594 (2015).
Watanabe, T. et al. Therapeutic results of the PKR inhibitor C16 suppressing tumor proliferation and angiogenesis in hepatocellular carcinoma in vitro and in vivo. Sci. Rep. 10, 5133 (2020).
Griffiths, C. E. M., Armstrong, A. W., Gudjonsson, J. E., & Barker, J. Psoriasis. Lancet 397, 1301–1315 (2021).
Moldovan, L. I. et al. Excessive-throughput RNA sequencing from paired lesional- and non-lesional pores and skin reveals main alterations within the psoriasis circRNAome. BMC Med. Genomics 12, 174 (2019).
Moldovan, L. I. et al. Characterization of round RNA transcriptomes in psoriasis and atopic dermatitis reveals disease-specific expression profiles. Exp. Dermatol. 30, 1187–1196 (2021).
Seeler, S. et al. International circRNA expression adjustments predate scientific and histological enhancements of psoriasis sufferers upon secukinumab therapy. PLoS ONE 17, e0275219 (2022).
Swindell, W. R. et al. Imiquimod has strain-dependent results in mice and doesn’t uniquely mannequin human psoriasis. Genome Med. 9, 24 (2017).
Obi, P. & Chen, Y. G. The design and synthesis of round RNAs. Strategies 196, 85–103 (2021).
Puttaraju, M. & Been, M. D. Group I permuted intron-exon (PIE) sequences self-splice to provide round exons. Nucleic Acids Res. 20, 5357–5364 (1992).
Wesselhoeft, R. A., Kowalski, P. S. & Anderson, D. G. Engineering round RNA for potent and secure translation in eukaryotic cells. Nat. Commun. 9, 2629 (2018).
Guo, S. Ok., Nan, F., Liu, C. X., Yang, L. & Chen, L. L. Mapping round RNA constructions in residing cells by SHAPE-MaP. Strategies 196, 47–55 (2021).
Kuhen, Ok. L. et al. Structural group of the human gene (PKR) encoding an interferon-inducible RNA-dependent protein kinase (PKR) and variations from its mouse homolog. Genomics 36, 197–201 (1996).
Samuel, C. E. The eIF-2 alpha protein kinases, regulators of translation in eukaryotes from yeasts to people. J. Biol. Chem. 268, 7603–7606 (1993).
Wu, M. et al. lncRNA SLERT controls part separation of FC/DFCs to facilitate Pol I transcription. Science 373, 547–555 (2021).
Yang, X. W. et al. MutS features as a clamp loader by positioning MutL on the DNA throughout mismatch restore. Nat. Commun. 13, 5808 (2022).
Hummert, J. et al. Photobleaching step evaluation for sturdy willpower of protein complicated stoichiometries. Mol. Biol. Cell. 32, ar35 (2021).
Yuan, J., He, Ok., Cheng, M., Yu, J. & Fang, X. Evaluation of the steps in single-molecule photobleaching traces by utilizing the hidden Markov mannequin and maximum-likelihood clustering. Chem. Asian J. 9, 2303–2308 (2014).
Nallagatla, S. R., Toroney, R. & Bevilacqua, P. C. Regulation of innate immunity by means of RNA construction and the protein kinase PKR. Curr. Opin. Struct. Biol. 21, 119–127 (2011).
Heinicke, L. A., Nallagatla, S. R., Hull, C. M. & Bevilacqua, P. C. RNA helical imperfections regulate activation of the protein kinase PKR: results of bulge place, measurement, and geometry. RNA 17, 957–966 (2011).
Yan, Y., Tao, H., He, J. & Huang, S. Y. The HDOCK server for built-in protein-protein docking. Nat. Protoc. 15, 1829–1852 (2020).
Husain, B., Hesler, S. & Cole, J. L. Regulation of PKR by RNA: formation of energetic and inactive dimers. Biochemistry 54, 6663–6672 (2015).
Mayo, C. B. et al. Structural foundation of protein kinase R autophosphorylation. Biochemistry 58, 2967–2977 (2019).
Dörner, T. & Furie, R. Novel paradigms in systemic lupus erythematosus. Lancet 393, 2344–2358 (2019).
Tsokos, G. C., Lo, M. S., Costa Reis, P. & Sullivan, Ok. E. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat. Rev. Rheumatol. 12, 716–730 (2016).
van der Suits, L. et al. Imiquimod-induced psoriasis-like pores and skin irritation in mice is mediated by way of the IL-23/IL-17 axis. J. Immunol. 182, 5836–5845 (2009).
Taylor, S. S., Haste, N. M. & Ghosh, G. PKR and eIF2alpha: integration of kinase dimerization, activation, and substrate docking. Cell 122, 823–825 (2005).
Ma, X. Ok. et al. CIRCexplorer3: a CLEAR pipeline for direct comparability of round and linear RNA expression. Genom. Proteom. Bioinform. 17, 511–521 (2019).
Futschik, M. E. & Carlisle, B. Noise-robust tender clustering of gene expression time-course knowledge. J. Bioinform. Comput. Biol. 3, 965–988 (2005).
Kumar, L. & M, E. F. Mfuzz: a software program bundle for tender clustering of microarray knowledge. Bioinformation 2, 5–7 (2007).
Lande, R. & Gilliet, M. Plasmacytoid dendritic cells: key gamers within the initiation and regulation of immune responses. Ann. N. Y. Acad. Sci. 1183, 89–103 (2010).
Chiricozzi, A., Romanelli, P., Volpe, E., Borsellino, G. & Romanelli, M. Scanning the immunopathogenesis of psoriasis. Int. J. Mol. Sci. 19, 179 (2018).
Yang, Y. L. et al. Poor signaling in mice devoid of double-stranded RNA-dependent protein kinase. EMBO J. 14, 6095–6106 (1995).
Nestle, F. O. et al. Plasmacytoid predendritic cells provoke psoriasis by means of interferon-alpha manufacturing. J. Exp. Med. 202, 135–143 (2005).
Rácz, E. et al. Narrowband ultraviolet B inhibits innate cytosolic double-stranded RNA receptors in psoriatic pores and skin and keratinocytes. Br. J. Dermatol. 164, 838–847 (2011).
Zhang, L. J. et al. Antimicrobial peptide LL37 and MAVS signaling drive interferon-β manufacturing by epidermal keratinocytes throughout pores and skin damage. Immunity 45, 119–130 (2016).
Chen, L. L. et al. A information to naming eukaryotic round RNAs. Nat. Cell Biol. 25, 1–5 (2023).
Zhang, X. O. et al. Complementary sequence-mediated exon circularization. Cell 159, 134–147 (2014).
Naidu, G. S. et al. A combinatorial library of lipid nanoparticles for cell type-specific mRNA supply. Adv. Sci. 10, e2301929 (2023).
Jones, S. A. et al. GILZ regulates Th17 responses and restrains IL-17-mediated pores and skin irritation. J. Autoimmun. 61, 73–80 (2015).
Fredriksson, T. & Pettersson, U. Extreme psoriasis-oral remedy with a brand new retinoid. Dermatologica 157, 238–244 (1978).
Langley, R. G. & Ellis, C. N. Evaluating psoriasis with psoriasis space and severity index, psoriasis international evaluation, and lattice system doctor’s international evaluation. J. Am. Acad. Dermatol. 51, 563–569 (2004).
Chen, Y. G. et al. N6-methyladenosine modification controls round RNA immunity. Mol. Cell. 76, 96–109.e109 (2019).
Qu, L. et al. Round RNA vaccines in opposition to SARS-CoV-2 and rising variants. Cell 185, 1728–1744.e1716 (2022).
Gal-Ben-Ari, S., Barrera, I., Ehrlich, M. & Rosenblum, Ok. PKR: a kinase to recollect. Entrance. Mol. Neurosci. 11, 480 (2018).
Tronel, C., Web page, G., Bodard, S., Chalon, S. & Antier, D. The particular PKR inhibitor C16 prevents apoptosis and IL-1beta manufacturing in an acute excitotoxic rat mannequin with a neuroinflammatory part. Neurochem. Int. 64, 73–83 (2014).
Chang, R. C. et al. Involvement of double-stranded RNA-dependent protein kinase and phosphorylation of eukaryotic initiation factor-2alpha in neuronal degeneration. J. Neurochem. 83, 1215–1225 (2002).
Stern, E., Chinnakkaruppan, A., David, O., Sonenberg, N. & Rosenblum, Ok. Blocking the eIF2alpha kinase (PKR) enhances constructive and damaging types of cortex-dependent style reminiscence. J. Neurosci. 33, 2517–2525 (2013).
Zhu, P. J. et al. Suppression of PKR promotes community excitability and enhanced cognition by interferon-gamma-mediated disinhibition. Cell 147, 1384–1396 (2011).
Feng, X. et al. Round RNA aptamers ameliorate AD-relevant phenotypes by focusing on PKR. Preprint at bioRxiv https://doi.org/10.1101/2024.03.27.583257 (2024).
Kaushik, S. B. & Lebwohl, M. G. Psoriasis: which remedy for which affected person: psoriasis comorbidities and most well-liked systemic brokers. J. Am. Acad. Dermatol. 80, 27–40 (2019).
Manfreda, V., Esposito, M., Campione, E., Bianchi, L. & Giunta, A. Apremilast efficacy and security in a psoriatic arthritis affected person affected by HIV and HBV virus infections. Postgrad. Med. 131, 239–240 (2019).
Guimaraes, C. P. et al. Web site-specific C-terminal and inside loop labeling of proteins utilizing sortase-mediated reactions. Nat. Protoc. 8, 1787–1799 (2013).
Donovan, J., Rath, S., Kolet-Mandrikov, D. & Korennykh, A. Speedy RNase L-driven arrest of protein synthesis within the dsRNA response with out degradation of translation equipment. RNA 23, 1660–1671 (2017).
Xiao, M. S. & Wilusz, J. E. An improved technique for round RNA purification utilizing RNase R that effectively removes linear RNAs containing G-quadruplexes or structured 3′ ends. Nucleic Acids Res. 47, 8755–8769 (2019).
Matsui, T., Tanihara, Ok. & Date, T. Expression of unphosphorylated type of human double-stranded RNA-activated protein kinase in Escherichia coli. Biochem. Biophys. Res. Commun. 284, 798–807 (2001).
Smola, M. J., Rice, G. M., Busan, S., Siegfried, N. A. & Weeks, Ok. M. Selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and correct RNA construction evaluation. Nat. Protoc. 10, 1643–1669 (2015).
Senavirathne, G. et al. Widespread nuclease contamination in generally used oxygen-scavenging programs. Nat. Strategies 12, 901–902 (2015).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a versatile trimmer for Illumina sequence knowledge. Bioinformatics 30, 2114–2120 (2014).
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a quick spliced aligner with low reminiscence necessities. Nat. Strategies 12, 357–360 (2015).
Kim, D. & Salzberg, S. L. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol. 12, R72 (2011).
Zhang, Y., Wang, J. & Xiao, Y. 3dRNA: 3D construction prediction from linear to round RNAs. J. Mol. Biol. 434, 167452 (2022).
Othniel, J. “doi: 10.17632/j6fmfjrc5y.1”, Mendeley Information, V1. Mendely Information https://doi.org/10.17632/94jg7jkt6n.1 (2020).
Guo, S. Ok. et al. Therapeutic Utility of Round RNA Aptamers in a Mouse Mannequin of Psoriasis (Gene Expression Omnibus, 2024); http://www.ncbi.nlm.nih.gov/geo/question/acc.cgi?acc=GSE248680
Weidinger S., Rodriguez E., Tsoi L. C. & Gudjonsson J. Atopic Dermatitis, Psoriasis and Wholesome Management RNA-seq Cohort (Gene Expression Omnibus, 2019); https://www.ncbi.nlm.nih.gov/geo/question/acc.cgi?acc=GSE121212