Schreiber, S. L. A chemical biology view of bioactive small molecules and a binder-based approach to connect biology to precision medicines. Isr. J. Chem. 59, 52–59 (2019).
Garlick, J. M. & Mapp, A. K. Selective modulation of dynamic protein complexes. Cell Chem. Biol. 27, 986–997 (2020).
Chattopadhyay, G. & Varadarajan, R. Facile measurement of protein stability and folding kinetics using a nano differential scanning fluorimeter. Protein Sci. 28, 1127–1134 (2019).
Greenfield, N. J. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat. Protoc. 1, 2527–2535 (2006).
Freire, E. Differential scanning calorimetry. Methods Mol. Biol. 40, 191–218 (1995).
Atsavapranee, B., Stark, C. D., Sunden, F., Thompson, S. & Fordyce, P. M. Fundamentals to function: quantitative and scalable approaches for measuring protein stability. Cell Syst. 12, 547–560 (2021).
Pantoliano, M. W. et al. High-density miniaturized thermal shift assays as a general strategy for drug discovery. J. Biomol. Screen. 6, 429–440 (2001).
Semisotnov, G. V. et al. Study of the ‘molten globule’ intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers 31, 119–128 (1991).
Simeonov, A. Recent developments in the use of differential scanning fluorometry in protein and small molecule discovery and characterization. Expert Opin. Drug Discov. 8, 1071–1082 (2013).
Gao, K., Oerlemans, R. & Groves, M. R. Theory and applications of differential scanning fluorimetry in early-stage drug discovery. Biophys. Rev. 12, 85–104 (2020).
Biter, A. B., de la Peña, A. H., Thapar, R., Lin, J. Z. & Phillips, K. J. DSF guided refolding as a novel method of protein production. Sci. Rep. 6, 18906 (2016).
Lee, M. E., Dou, X., Zhu, Y. & Phillips, K. J. Refolding proteins from inclusion bodies using differential scanning fluorimetry guided (DGR) protein refolding and melttraceur web. Curr. Protoc. Mol. Biol. 125, e78 (2019).
Ristic, M., Rosa, N., Seabrook, S. A. & Newman, J. Formulation screening by differential scanning fluorimetry: how often does it work? Acta Crystallogr. F 71, 1359–1364 (2015).
Chari, A. et al. ProteoPlex: stability optimization of macromolecular complexes by sparse-matrix screening of chemical space. Nat. Methods 12, 859–865 (2015).
Ahmed, S., Bhasin, M., Manjunath, K. & Varadarajan, R. Prediction of residue-specific contributions to binding and thermal stability using yeast surface display. Front. Mol. Biosci. 8, 800819 (2021).
Menzen, T. & Friess, W. High-throughput melting-temperature analysis of a monoclonal antibody by differential scanning fluorimetry in the presence of surfactants. J. Pharm. Sci. 102, 415–428 (2013).
Wu, T. et al. Three essential resources to improve differential scanning fluorimetry (DSF) experiments. Preprint at bioRxiv https://doi.org/10.1101/2020.03.22.002543 (2020).
Alexandrov, A. I., Mileni, M., Chien, E. Y. T., Hanson, M. A. & Stevens, R. C. Microscale fluorescent thermal stability assay for membrane proteins. Structure 16, 351–359 (2008).
Ihmels, H. Dyes in modern organic chemistry. Beilstein J. Org. Chem. 15, 2798–2800 (2019).
Condello, C. et al. Structural heterogeneity and intersubject variability of Aβ in familial and sporadic Alzheimer’s disease. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1714966115 (2018).
Kuenemann, M. A. et al. Weaver’s historic accessible collection of synthetic dyes: a cheminformatics analysis. Chem. Sci. 8, 4334–4339 (2017).
Protein-adaptive DSF data explorer. shinyapps https://padsfdyes.shinyapps.io/Exp1243_heatmap_cache/ (2024).
Gestwicki, J. Dye screening visual protocol. Zenodo https://doi.org/10.5281/zenodo.100231977 (2024).
Schiavina, M., Pontoriero, L., Uversky, V. N., Felli, I. C. & Pierattelli, R. The highly flexible disordered regions of the SARS-CoV-2 nucleocapsid N protein within the 1–248 residue construct: sequence-specific resonance assignments through NMR. Biomol. NMR Assign. 15, 219–227 (2021).
Giri, R. et al. Understanding COVID-19 via comparative analysis of dark proteomes of SARS-CoV-2, human SARS and bat SARS-like coronaviruses. Cell. Mol. Life Sci. 78, 1655–1688 (2021).
Cubuk, J. et al. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. Nat. Commun. 12, 1936 (2021).
Wang, S. et al. Targeting liquid–liquid phase separation of SARS-CoV-2 nucleocapsid protein promotes innate antiviral immunity by elevating MAVS activity. Nat. Cell Biol. 23, 718–732 (2021).
Krafcikova, P., Silhan, J., Nencka, R. & Boura, E. Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Nat. Commun. 11, 3717 (2020).
Lin, S. et al. Crystal structure of SARS-CoV-2 nsp10 bound to nsp14-ExoN domain reveals an exoribonuclease with both structural and functional integrity. Nucleic Acids Res. 49, 5382–5392 (2021).
Yoshimoto, F. K. The proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19. Protein J. 39, 198–216 (2020).
Fu, Z. et al. The complex structure of GRL0617 and SARS-CoV-2 PLpro reveals a hot spot for antiviral drug discovery. Nat. Commun. 12, 488 (2021).
Schuller, M. et al. Fragment binding to the Nsp3 macrodomain of SARS-CoV-2 identified through crystallographic screening and computational docking. Sci. Adv. 7, eabf8711 (2021).
Virdi, R. S. et al. Discovery of drug-like ligands for the Mac1 domain of SARS-CoV-2 Nsp3. SLAS Discov. https://doi.org/10.1177/2472555220960428 (2020).
Gahbauer, S. et al. Iterative computational design and crystallographic screening identifies potent inhibitors targeting the Nsp3 macrodomain of SARS-CoV-2. Proc. Natl Acad. Sci. USA 120, e2212931120 (2023).
Gestwicki, J. Data_S2_dye_screening_results. Zenodo https://doi.org/10.5281/zenodo.10028692 (2023).
Milardi, D., La Rosa, C. & Grasso, D. Extended theoretical analysis of irreversible protein thermal unfolding. Biophys. Chem. 52, 183–189 (1994).
Myers, J. K., Pace, C. N. & Scholtz, J. M. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 4, 2138–2148 (1995).
Rees, D. C. & Robertson, A. D. Some thermodynamic implications for the thermostability of proteins. Protein Sci. 10, 1187–1194 (2001).
Levine, Z. G. & Walker, S. The biochemistry of O-GlcNAc transferase: which functions make it essential in mammalian cells? Annu. Rev. Biochem. 85, 631–657 (2016).
Alteen, M. G. et al. Potent De Novo macrocyclic peptides that inhibit O-GlcNAc transferase through an Allosteric mechanism. Angew. Chem. Int. Ed. Engl. 62, e202215671 (2022).
Gestwicki, J. Supplementary Table S2_protein_screening_conditions. Zenodo https://doi.org/10.5281/zenodo.10480848 (2024).
Carpenter, A. Visualizing and analyzing proteins in Python. Medium https://towardsdatascience.com/visualizing-and-analyzing-proteins-in-python-bd99521ccd (2021).
Welcome to UCSF Dye Screening. shinyapps https://ucsfdyescreens.shinyapps.io/home/ (2024).
Gestwicki, J. Data S3_dye_screen_results_raw_data. Zenodo https://doi.org/10.5281/zenodo.10028702 (2023).
taiawu. taiawu/dsfworld: DSFworld ShinyApp website. Zenodo https://doi.org/10.5281/zenodo.8432909 (2023).