Basudan, A. M. The role of immune checkpoint inhibitors in cancer therapy. Clin. Pract. 13, 22–40 (2023).
Labanieh, L. & Mackall, C. L. CAR immune cells: design principles, resistance and the next generation. Nature 614, 635–648 (2023).
Laskowski, T. J., Biederstädt, A. & Rezvani, K. Natural killer cells in antitumour adoptive cell immunotherapy. Nat. Rev. Cancer 22, 557–575 (2022).
Granhøj, J. S. et al. Tumor-infiltrating lymphocytes for adoptive cell therapy: recent advances, challenges, and future directions. Exp. Opin. Biol. Ther. 22, 627–641 (2022).
Edwards, S. C., Hoevenaar, W. H. M. & Coffelt, S. B. Emerging immunotherapies for metastasis. Br. J. Cancer 124, 37–48 (2021).
Dahiya, D. S., Kichloo, A., Singh, J., Albosta, M. & Lekkala, M. Current immunotherapy in gastrointestinal malignancies: a review. J. Investig. Med. 69, 689–696 (2021).
Zhou, S., Gravekamp, C., Bermudes, D. & Liu, K. Tumour-targeting bacteria engineered to fight cancer. Nat. Rev. Cancer 18, 727–743 (2018).
Mowday, A. M. et al. Advancing clostridia to clinical trial: past lessons and recent progress. Cancers 8, 63 (2016).
Toso, J. F. et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J. Clin. Oncol. 20, 142–152 (2002).
Luke, J. J. et al. Phase I study of SYNB1891, an engineered E. coli Nissle strain expressing STING agonist, with and without atezolizumab in advanced malignancies. Clin. Cancer Res. 29, 2435–2444 (2023).
Tumas, S. et al. Engineered E. coli Nissle 1917 for delivery of bioactive IL-2 for cancer immunotherapy. Sci. Rep. 13, 12506 (2023).
Badie, F. et al. Use of Salmonella bacteria in cancer therapy: direct, drug delivery and combination approaches. Front. Oncol. 11, 624759 (2021).
Chen, H. et al. Advances in Escherichia coli Nissle 1917 as a customizable drug delivery system for disease treatment and diagnosis strategies. Mater. Today Bio 18, 100543 (2023).
Aganja, R. P., Sivasankar, C., Senevirathne, A. & Lee, J. H. Salmonella as a promising curative tool against cancer. Pharmaceutics 14, 2100 (2022).
Raman, V. et al. Build-a-bug workshop: using microbial–host interactions and synthetic biology tools to create cancer therapies. Cell Host Microbe 31, 1574–1592 (2023).
Zheng, J. H. et al. Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci. Transl. Med. 9, eaak9537 (2017).
Vincent, R. L. et al. Probiotic-guided CAR-T cells for solid tumor targeting. Science 382, 211–218 (2023).
Chen, Y., Du, M., Yuan, Z., Chen, Z. & Yan, F. Spatiotemporal control of engineered bacteria to express interferon-γ by focused ultrasound for tumor immunotherapy. Nat. Commun. 13, 4468 (2022).
Ma, X. et al. Modular-designed engineered bacteria for precision tumor immunotherapy via spatiotemporal manipulation by magnetic field. Nat. Commun. 14, 1606 (2023).
Wittrup, K. D. Protein engineering by cell-surface display. Curr. Opin. Biotechnol. 12, 395–399 (2001).
Lee, S. Y., Choi, J. H. & Xu, Z. Microbial cell-surface display. Trends Biotechnol. 21, 45–52 (2003).
Bryant, F. R. Construction of a recombinase-deficient mutant recA protein that retains single-stranded DNA-dependent ATPase activity. J. Biol. Chem. 263, 8716–8723 (1988).
Scudamore, R. A., Beveridge, T. J. & Goldner, M. Outer-membrane penetration barriers as components of intrinsic resistance to beta-lactam and other antibiotics in Escherichia coli K-12. Antimicrob. Agents Chemother. 15, 182–189 (1979).
Waldmann, T. A. Cytokines in cancer immunotherapy. Cold Spring Harb. Perspect. Biol. 10, 6–15 (2018).
Zhou, T. et al. IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy. Nature 583, 609–614 (2020).
Han, M. J. & Lee, S. H. An efficient bacterial surface display system based on a novel outer membrane anchoring element from the Escherichia coli protein YiaT. FEMS Microbiol. Lett. 362, 1–7 (2015).
Glass, D. S. & Riedel-Kruse, I. H. A synthetic bacterial cell–cell adhesion toolbox for programming multicellular morphologies and patterns. Cell 174, 649–658 (2018).
Hernández-Rollán, C. et al. LyGo: a platform for rapid screening of lytic polysaccharide monooxygenase production. ACS Synth. Biol. 10, 897–906 (2021).
Fidler, I. J. Biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer Res. 35, 218–24 (1975).
Canale, F. P. et al. Metabolic modulation of tumours with engineered bacteria for immunotherapy. Nature 598, 662–666 (2021).
Murthy, H., Iqbal, M., Chavez, J. C. & Kharfan-Dabaja, M. A. Cytokine release syndrome: current perspectives. Immunotargets Ther. 8, 43–52 (2019).
Shimabukuro-Vornhagen, A. et al. Cytokine release syndrome. J. Immunother. Cancer 6, 56 (2018).
Dagher, O. K. & Posey, A. D. Forks in the road for CAR T and CAR NK cell cancer therapies. Nat. Immunol. 24, 1994–2007 (2023).
Santomasso, B., Bachier, C., Westin, J., Rezvani, K. & Shpall, E. J. The other side of CAR T-cell therapy: cytokine release syndrome, neurologic toxicity and financial burden. American Society of Clinical Oncology Educational Book https://doi.org/10.1200/edbk_238691 (2019).
Wang, Z. & Han, W. Biomarkers of cytokine release syndrome and neurotoxicity related to CAR-T cell therapy. Biomark. Res. 6, 4 (2018).
Dong, H. et al. Memory-like NK cells armed with a neoepitope-specific CAR exhibit potent activity against NPM1 mutated acute myeloid leukemia. Proc. Natl Acad. Sci. USA 119, e2122379119 (2022).
Hagerty, B. L. & Takabe, K. Biology of mesothelin and clinical implications: a review of existing literature. World J. Oncol. 14, 340–349 (2023).
Hirakawa, H., Haga, T. & Nagamune, T. Artificial protein complexes for biocatalysis. Top. Catal. 55, 1124–1137 (2012).
Delisa, M. P. & Conrado, R. J. Synthetic metabolic pipelines. Nat. Biotechnol. 27, 728–729 (2009).
Dueber, J. E. et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27, 753–759 (2009).
Taylor, R. G., Walker, D. C. & Mclnnes, R. R. E. coli host strains. Nucleic Acids Res. 21, 1677–1678 (1993).
Chan, W. T., Verma, C. S., Lane, D. P. & Gan, S. K. E. A comparison and optimization of methods and factors affecting the transformation of Escherichia coli. Biosci. Rep. 33, e00086 (2013).
Browning, D. F., Hobman, J. L. & Busby, S. J. W. Laboratory strains of Escherichia coli K-12: things are seldom what they seem. Micro. Genom. 9, mgen000922 (2023).
Liu, A. et al. Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: generating an antibiotic bar code. Antimicrob. Agents Chemother. 54, 1393–1403 (2010).
Faïs, T., Delmas, J., Barnich, N., Bonnet, R. & Dalmasso, G. Colibactin: more than a new bacterial toxin. Toxins 10, 151 (2018).
Jin, Y. & Fu, L. Engineer a double team of short-lived and glucose-sensing bacteria for cancer eradication. Cell Rep. Med. 4, 101043 (2023).
Shrihari, T. G. Dual role of inflammatory mediators in cancer. Ecancermedicalscience 11, 721 (2017).
Knelson, E. H. et al. Activation of tumor-cell STING primes NK-cell therapy. Cancer Immunol. Res. 10, 947–961 (2022).
Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).
He, Y. et al. Self-assembled cGAMP-STINGΔTM signaling complex as a bioinspired platform for cGAMP delivery. Sci. Adv. 6, eaba7589 (2020).
Sun, X. et al. Engineering the immune adaptor protein STING as a functional carrier. Adv. Ther. https://doi.org/10.1002/adtp.202100066 (2021).
Sun, X. et al. Nanobody-functionalized cellulose for capturing SARS-CoV-2. Appl. Environ. Microbiol. 88, e0230321 (2022).
Li, Y. et al. Multifunctional oncolytic nanoparticles deliver self-replicating IL-12 RNA to eliminate established tumors and prime systemic immunity. Nat. Cancer 1, 882–893 (2020).
Tomar, S. et al. Development of highly effective anti-mesothelin hYP218 chimeric antigen receptor T cells with increased tumor infiltration and persistence for treating solid tumors. Mol. Cancer Ther. 21, 1195–1206 (2022).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
Zhang, Y. et al. Rapid and accurate alignment of nucleotide conversion sequencing reads with HISAT-3N. Genome Res. 31, 1290–1295 (2021).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011).
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
Yang, S. et al. Nonpathogenic E. coli Displaying Decoy-Resistant IL18 Mutein Enhance the Efficacy of Cancer Immunotherapies (NCBI, 2024); https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE275391