Hiroto, S., Miyake, Y. & Shinokubo, H. Synthesis and functionalization of porphyrins through organometallic methodologies. Chem. Rev. 117, 2910–3043 (2017).
Barr, H. et al. Eradication of high-grade dysplasia in columnar-lined (Barrett’s) oesophagus by photodynamic therapy with endogenously generated protoporphyrin IX. Lancet 348, 584–585 (1996).
Surdel, M. C. et al. Antibacterial photosensitization through activation of coproporphyrinogen oxidase. Proc. Natl Acad. Sci. USA 114, E6652–E6659 (2017).
Drury, S. L. et al. Simultaneous exposure to intracellular and extracellular photosensitizers for the treatment of Staphylococcus aureus infections. Antimicrob. Agents Chemother. 65, e0091921 (2021).
Poulos, T. L. Heme enzyme structure and function. Chem. Rev. 114, 3919–3962 (2014).
Zhang, J. et al. Recent advances in microbial production of high-value compounds in the tetrapyrrole biosynthesis pathway. Biotechnol. Adv. 55, 107904 (2022).
Choi, K. R., Yu, H. E., Lee, H. & Lee, S. Y. Improved production of heme using metabolically engineered Escherichia coli. Biotechnol. Bioeng. 119, 3178–3193 (2022).
Zhang, W., Lai, W. & Cao, R. Energy-related small molecule activation reactions: oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems. Chem. Rev. 117, 3717–3797 (2017).
Singh, S. et al. Glycosylated porphyrins, phthalocyanines, and other porphyrinoids for diagnostics and therapeutics. Chem. Rev. 115, 10261–10306 (2015).
Espinas, N. A., Kobayashi, K., Takahashi, S., Mochizuki, N. & Masuda, T. Evaluation of unbound free heme in plant cells by differential acetone extraction. Plant Cell Physiol. 53, 1344–1354 (2012).
In, M.-J., Kim, D. C., Chae, H. J. & Oh, N.-S. Effects of degree of hydrolysis and pH on the solubility of heme-iron enriched peptide in hemoglobin hydrolysate. Biosci. Biotechnol. Biochem. 67, 365–367 (2003).
Lichtenthaler, H. K. & Buschmann, C. Extraction of phtosynthetic tissues: chlorophylls and carotenoids. Curr. Protoc. Food Anal. Chem. 1, F4.2.1–F4.2.6 (2001).
Kwon Seok, J., de Boer Arjo, L., Petri, R. & Schmidt-Dannert, C. High-level production of porphyrins in metabolically engineered Escherichia coli: systematic extension of a pathway assembled from overexpressed genes involved in heme biosynthesis. Appl. Environ. Microbiol. 69, 4875–4883 (2003).
Bali, S. et al. Molecular hijacking of siroheme for the synthesis of heme and d1 heme. Proc. Natl Acad. Sci. USA 108, 18260–18265 (2011).
Dailey Harry, A. et al. Prokaryotic heme biosynthesis: multiple pathways to a common essential product. Microbiol. Mol. Biol. Rev. 81, e00048-16 (2017).
Dailey, H. A., Gerdes, S., Dailey, T. A., Burch, J. S. & Phillips, J. D. Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin. Proc. Natl Acad. Sci. USA 112, 2210–2215 (2015).
Fang, H. et al. Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B12. Nat. Commun. 9, 4917 (2018).
Chen, G. E. et al. Complete enzyme set for chlorophyll biosynthesis in Escherichia coli. Sci. Adv. 4, eaaq1407 (2018).
Nielsen, M. T. et al. Assembly of highly standardized gene fragments for high-level production of porphyrins in E. coli. ACS Synth. Biol. 4, 274–282 (2015).
Zhang, J. et al. Heme biosensor-guided in vivo pathway optimization and directed evolution for efficient biosynthesis of heme. Biotechnol. Biofuels Bioprod. 16, 33 (2023).
Dai, J. et al. Differential gene content and gene expression for bacterial evolution and speciation of Shewanella in terms of biosynthesis of heme and heme-requiring proteins. BMC Microbiol. 19, 173 (2019).
Ouchane, S., Picaud, M., Therizols, P., Reiss-Husson, F. & Astier, C. Global regulation of photosynthesis and respiration by FnrL: the first two targets in the tetrapyrrole pathway. J. Biol. Chem. 282, 7690–7699 (2007).
Toriya, M. et al. Zincphyrin, a novel coproporphyrin III with zinc from Streptomyces sp. J. Antibiot. (Tokyo) 46, 196–200 (1993).
Nguyen, H. T. et al. Exploration of cryptic organic photosensitive compound as Zincphyrin IV in Streptomyces venezuelae ATCC 15439. Appl. Microbiol. Biotechnol. 104, 713–724 (2020).
Cleary, J. L., Kolachina, S., Wolfe, B. E. & Sanchez, L. M. Coproporphyrin III produced by the bacterium Glutamicibacter arilaitensis binds zinc and is upregulated by fungi in cheese rinds. mSystems. 3, e00036-18 (2018).
Zhao, X. R., Choi, K. R. & Lee, S. Y. Metabolic engineering of Escherichia coli for secretory production of free haem. Nat. Catal. 1, 720–728 (2018).
Ko, Y. J. et al. Animal-free heme production for artificial meat in Corynebacterium glutamicum via systems metabolic and membrane engineering. Metab. Eng. 66, 217–228 (2021).
Ishchuk, O. P. et al. Genome-scale modeling drives 70-fold improvement of intracellular heme production in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 119, e2108245119 (2022).
Choi, K. R., Yu, H. E. & Lee, S. Y. Production of zinc protoporphyrin IX by metabolically engineered Escherichia coli. Biotechnol. Bioeng. 119, 3319–3325 (2022).
Nelson, N. Metal ion transporters and homeostasis. EMBO J. 18, 4361–4371 (1999).
Frunzke, J., Gätgens, C., Brocker, M. & Bott, M. Control of heme homeostasis in Corynebacterium glutamicum by the two-component system HrrSA. J. Bacteriol. 193, 1212–1221 (2011).
Koripella, R. K. et al. Mechanism of elongation factor-G-mediated fusidic acid resistance and fitness compensation in Staphylococcus aureus. J. Biol. Chem. 287, 30257–30267 (2012).
Kojima, I., Maruhashi, K., Sato, H. & Fujiwara, Y. A highly active producer of coproporphyrin III and uroporphyrin III. J. Ferment. Bioeng. 76, 527–529 (1993).
Zhang, L. et al. Phosphate limitation increases coenzyme Q10 production in industrial Rhodobacter sphaeroides HY01. Synth. Syst. Biotechnol. 4, 212–219 (2019).
Shi, T. et al. Screening and engineering of high-activity promoter elements through transcriptomics and red fluorescent protein visualization in Rhodobacter sphaeroides. Synth. Syst. Biotechnol. 6, 335–342 (2021).
Lee, S. Q. E., Tan, T. S., Kawamukai, M. & Chen, E. S. Cellular factories for coenzyme Q10 production. Microb. Cell. Fact. 16, 39 (2017).
Lu, W. et al. Identification and elimination of metabolic bottlenecks in the quinone modification pathway for enhanced coenzyme Q10 production in Rhodobacter sphaeroides. Metab. Eng. 29, 208–216 (2015).
Wang, Z.-J. et al. Oxygen uptake rate controlling strategy balanced with oxygen supply for improving coenzyme Q10 production by Rhodobacter sphaeroides. Biotechnol. Bioprocess Eng. 25, 459–469 (2020).
Klaus, O. et al. Engineering phototrophic bacteria for the production of terpenoids. Curr. Opin. Biotechnol. 77, 102764 (2022).
Qiang, S. et al. Elevated β-carotene synthesis by the engineered rhodobacter sphaeroides with enhanced CrtY expression. J. Agric. Food Chem. 67, 9560–9568 (2019).
Orsi, E. et al. Growth-uncoupled isoprenoid synthesis in Rhodobacter sphaeroides. Biotechnol. Biofuels 13, 123 (2020).
Hu, J., Yang, H., Wang, X., Cao, W. & Guo, L. Strong pH dependence of hydrogen production from glucose by Rhodobacter sphaeroides.Int. J. Hydrog. Energy 45, 9451–9458 (2020).
Li, S. et al. Photoautotrophic hydrogen production of Rhodobacter sphaeroides in a microbial electrosynthesis cell. Bioresour. Technol. 320, 124333 (2021).
Orsi, E., Beekwilder, J., Eggink, G., Kengen, S. W. M. & Weusthuis, R. A. The transition of Rhodobacter sphaeroides into a microbial cell factory. Biotechnol. Bioeng. 118, 531–541 (2021).
Oh, J.-I. & Kaplan, S. Generalized approach to the regulation and integration of gene expression. Mol. Microbiol. 39, 1116–1123 (2001).
Imam, S., Noguera, D. R. & Donohue, T. J. Global analysis of photosynthesis transcriptional regulatory networks. PLoS Genet. 10, e1004837 (2014).
Kang, Z. et al. Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12. Biotechnol. Adv. 30, 1533–1542 (2012).
Nishikawa, S. et al. Rhodobacter sphaeroides mutants which accumulate 5-aminolevulinic acid under aerobic and dark conditions. J. Biosci. Bioeng. 87, 798–804 (1999).
Urakami, T. & Yoshida, T. Production of ubiquinone and bacteriochlorophyll a by Rhodobacter sphaeroides and Rhodobacter sulfidophilus. J. Ferment. Bioeng. 76, 191–194 (1993).
Zeilstra-Ryalls, J. H. & Kaplan, S. Aerobic and anaerobic regulation in Rhodobacter sphaeroides 2.4.1: the role of the fnrL gene. J. Bacteriol. 177, 6422–6431 (1995).
Wei, W. et al. Lysine acetylation regulates the function of the global anaerobic transcription factor FnrL in Rhodobacter sphaeroides. Mol. Microbiol. 104, 278–293 (2017).
Tao, Y. et al. Characteristics of a new photosynthetic bacterial strain for hydrogen production and its application in wastewater treatment. Int. J. Hydrog. Energy 33, 963–973 (2008).
Qu, Y., Su, A., Li, Y., Meng, Y. & Chen, Z. Manipulation of the regulatory genes ppsR and prrA in Rhodobacter sphaeroides enhances lycopene production. J. Agric. Food Chem. 69, 4134–4143 (2021).
Rowan-Nash Aislinn, D., Korry Benjamin, J., Mylonakis, E. & Belenky, P. Cross-domain and viral interactions in the microbiome. Microbiol. Mol. Biol. Rev. 83, e00044-00018 (2019).
Dailey, T. A. et al. Discovery and characterization of HemQ: an essential heme biosynthetic pathway component. J. Biol. Chem. 285, 25978–25986 (2010).
Toriya, M., Yamamoto, M., Saeki, K., Fujii, Y. & Matsumoto, K. Antitumor effect of photodynamic therapy with zincphyrin, zinc-coproporphyrin III, in mice. Biosci. Biotechnol. Biochem. 65, 363–370 (2001).
Yamamoto, M. et al. Production of singlet oxygen on irradiation of a photodynamic therapy agent, zinc-coproporphyrin III, with low host toxicity. Biometals 16, 591–597 (2003).
Voigt, C. A. Synthetic biology 2020–2030: six commercially-available products that are changing our world. Nat. Commun. 11, 6379 (2020).
Lechardeur, D. et al. Discovery of intracellular heme-binding protein HrtR, which controls heme efflux by the conserved HrtB-HrtA transporter in Lactococcus lactis. J. Biol. Chem. 287, 4752–4758 (2012).
Zou, Z.-P., Du, Y., Fang, T.-T., Zhou, Y. & Ye, B.-C. Biomarker-responsive engineered probiotic diagnoses, records, and ameliorates inflammatory bowel disease in mice. Cell Host Microbe 31, 199–212 (2023).
Weber, P. C., Ohlendorf, D. H., Wendoloski, J. J. & Salemme, F. R. Structural origins of high-affinity biotin binding to streptavidin. Science 243, 85–88 (1989).
Chen, J. S. et al. CRISPR–Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360, 436–439 (2018).
Celis, A. I. et al. Structure-based mechanism for oxidative decarboxylation reactions mediated by amino acids and heme propionates in coproheme decarboxylase (HemQ). J. Am. Chem. Soc. 139, 1900–1911 (2017).
Griffiths, M. & Stanier, R. Y. Some mutational changes in the photosynthetic pigment system of Rhodopseudomonas spheroides. Microbiology 14, 698–715 (1956).
Skotnicová, P. et al. The cyanobacterial protoporphyrinogen oxidase HemJ is a new b-type heme protein functionally coupled with coproporphyrinogen III oxidase. J. Biol. Chem. 293, 12394–12404 (2018).
Kanazireva, E. & Biel, A. J. Cloning and overexpression of the Rhodobacter capsulatus hemH gene. J. Bacteriol. 177, 6693–6694 (1995).
Yoshida, H., Kotani, Y., Ochiai, K. & Araki, K. Production of ubiquinone-10 using bacteria. J. Gen. Appl. Microbiol. 44, 19–26 (1998).
Gibson, L. C. D., McGlynn, P., Chaudhri, M. & Hunter, C. N. A putative anaerobic coproporphyrinogen III oxidase in Rhodobacter sphaeroides. II. Analysis of a region of the genome encoding hemF and the puc operon. Mol. Microbiol. 6, 3171–3186 (1992).
Oh, J.-I., Eraso Jesus, M. & Kaplan, S. Interacting regulatory circuits involved in orderly control of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J. Bacteriol. 182, 3081–3087 (2000).
Eraso, J. M. & Kaplan, S. prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter sphaeroides. J. Bacteriol. 176, 32–43 (1994).
Oh, J.-I., Ko, I.-J. & Kaplan, S. The default state of the membrane-localized histidine kinase Prrb of Rhodobacter sphaeroides 2.4.1 is in the kinase-positive mode. J. Bacteriol. 183, 6807–6814 (2001).
Hornbeck, P. V. Enzyme-linked immunosorbent assays. Curr. Opin. Immunol. 110, 2.1.1–2.1.23 (2015).
Liang, M. et al. A CRISPR–Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules. Nat. Commun. 10, 3672 (2019).
Zeng, X. et al. An in vitro CRISPR–Cas12a-mediated protocol for direct cloning of large DNA fragments. STAR Protoc. 4, 102435 (2023).